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Abstract 

Objectives: To explore automatic methods for the 
classification of biomedical vocabularies based on their 
content. Methods: We create semantic group profiles for each 
source vocabulary in the UMLS and compare the vectors 
using a Euclidian distance. We explore several techniques for 
visualizing individual semantic group profiles and the entire 
distance matrix, including donut pie charts, heatmaps, 
dendrograms and networks. Results: We provide donut pie 
charts for individual source vocabularies, as well as a 
heatmap, dendrogram and network for a subset of 78 
vocabularies from the UMLS. Conclusions: Our approach to 
fingerprinting biomedical terminologies is completely 
automated and can easily be applied to all source 
vocabularies in the UMLS, including upcoming versions of the 
UMLS. It supports the exploration, selection and comparison 
of the biomedical terminologies integrated into the UMLS. 
The visualizations are available at (http://mor.-
nlm.nih.gov/pubs/supp/2015-medinfo-br/index.html) 
Keywords:  
UMLS; semantic groups; terminology fingerprinting; content-
based classification 

Introduction 

The Unified Medical Language System® (UMLS) is a 
terminology integration system [1]. It provides broad coverage 
of the biomedical domain, from disorders to procedures to 
drugs to anatomical structures. While some source 
vocabularies focus on a subdomain of biomedicine (e.g., 
RxNorm for drugs), others, such as SNOMED CT and the 
NCI Thesaurus, provide coverage across biomedicine. 
However, selecting a biomedical terminology remains 
challenging for users, because there is no description of 
content coverage, i.e., no description of which subdomains are 
covered by a given terminology. 
The UMLS used to provide a classification of source 
vocabularies based on usage. This classification, performed 
manually, leveraged the Medical Subject Headings (MeSH). 
This classification was heterogeneous, as it mixed usage and 
content categories. For example, categories such as “Nursing” 
and “Complementary Therapies” reflect usage, whereas the 
categories “Disease” and “Procedures” are based on content. 
Moreover, classification by usage does not necessarily align 
with classification by content. For example, the International 
Classification for Nursing Practice (ICNP®) and Nursing 
Interventions Classification (NIC) are both “Nursing” 
terminologies, although NIC predominantly contains 
therapeutic procedures, while ICNP also contains content 
about diagnoses and outcomes. In addition, source 

vocabularies may need to be classified into more than one 
category. Another limitation of this classification is that only 
the most frequently updated sources in the Metathesaurus 
were considered, because manual classification is labor-
intensive. Overall, while useful to new users, this 
classification was imperfect and difficult to maintain for new 
versions of the UMLS in which new terminologies may have 
been introduced or modified significantly. 
The objective of this work is to explore automatic methods for 
the classification of biomedical vocabularies based on their 
content. More specifically, we create a “fingerprint” (i.e., 
semantic profile) for each terminology in the UMLS by 
leveraging the categorization of UMLS concepts into semantic 
groups. These semantic group profiles form the basis for 
classifying and comparing biomedical vocabularies based on 
their content, and are expected to help users explore, select 
and compare terminologies (e.g., for text annotation 
purposes). Our approach is fully automatic, does not require 
any additional knowledge about the vocabularies, and can be 
easily deployed. We also explore several visualization 
techniques to render this classification. The semantic 
fingerprints we provide for biomedical terminologies could 
complement, if not replace, the classification of UMLS source 
vocabularies provided earlier. 

Background 

The Unified Medical Language System. The Unified Medical 
Language System® (UMLS) is assembled by integrating 179 
source vocabularies. The UMLS Metathesaurus (version 
2014AB) currently contains about 3.1 million concepts, i.e., 
clusters of synonymous terms coming from various source 
vocabularies. Each Metathesaurus concept is assigned at least 
one semantic type from the UMLS Semantic Network, a small 
network of 133 semantic types organized into a tree structure. 
The semantic types are partitioned into fifteen semantic 
groups (McCray et al. 2001), which represent broad subdo-
mains of biomedicine, such as Anatomy, Chemicals & Drugs, 
and Disorders. Every semantic type is categorized into only 
one semantic group. The fifteen semantic groups are listed in 
Table 1, along with and the number of Metathesaurus concepts 
in each group. In practice, the semantic groups provide a 
coarse categorization of the Metathesaurus concepts based on 
the principles of semantic validity, parsimony, completeness, 
exclusivity, naturalness, and utility. The semantic groups have 
been used in several applications, including visualization of 
highly conceptual spaces [2], discovery of inconsistencies in 
the categorization of UMLS concepts [3], word-sense disam-
biguation [4], and quality assurance of value sets [5]. 
Visualization and cognition. We present different graphical 
representations of vocabularies based on their semantic 
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content. There exists a broad body of literature describing the 
impact of visual displays on not only the speed of decision-
making, but also its accuracy [6-9]. Cognitive theories provide 
context on the processes involved in visualizing information. 
This can range from the theories of Cleveland and McGill, 
who propose a set of elementary visual tasks for interpreting 
displays, to Pinker’s models of cognitive processing from raw 
visual information to encoded visual descriptions [10, 11]. We 
also leverage some of the visualization techniques used for 
genomic datasets [12]. In the context of fingerprinting 
biomedical terminologies, visualization is an important 
component of presenting the information in a succinct manner 
to facilitate use by a broad range of stakeholders within the 
biomedical community. 

Table 1– Distribution of Metathesaurus concepts 
by semantic groups 

Semantic group name Abbreviation # concepts 
Activities & Behaviors ACTI 4,385 
Anatomy ANAT 122,298 
Chemicals & Drugs CHEM 813,426 
Concepts & Ideas CONC 48,711 
Devices DEVI 45,883 
Disorders DISO 544,829 
Genes & Molecular Sequences GENE 67,760 
Geographic Areas GEOG 4,426 
Living Beings LIVB 948,012 
Objects OBJC 16,175 
Occupations OCCU 1,506 
Organizations ORGA 2,220 
Phenomena PHEN 12,778 
Physiology PHYS 140,146 
Procedures PROC 374,195 

Methods 

Our method for classifying biomedical vocabularies based on 
their content can be summarized as follows. For each source 
vocabulary in the UMLS, we first create a vector reflecting the 
distribution of its concepts among semantic groups (i.e., a 
semantic group profile). We then compare these semantic 
group profiles using a Euclidian distance. Finally, we apply 
several visualization techniques to the semantic group profiles. 

Creating semantic group profiles 

For each UMLS source vocabulary, we compute the frequency 
distribution of its concepts among the 15 semantic groups, 
which we record in a 15-dimensional vector. This is what we 
call the semantic group profile (or semantic fingerprint) of a 
source vocabulary. For example, SNOMED CT spans a 
variety of semantic groups, including Disorders (31%), 
Chemicals & Drugs (23), Procedures (11%), Anatomy (7%) 
and Devices (3%). In contrast, 99% of the concepts from the 
Foundational Model of Anatomy (FMA) belong to the 
semantic group Anatomy. Its semantic profile is sparse, with 
few semantic groups other than Anatomy having a value other 
than 0. The set of vectors computed for each terminology 
forms a matrix of terminologies by semantic groups. 

Comparing semantic group profiles 

In order to compare two semantic group profiles, we use a 
Euclidian distance metric, that is, the straight line distance 
between two vectors, i.e., between two semantic group 
profiles. (We also tested other similarity metrics including 
cosine, Jaccard, and Dice. However, the Euclidian distance 
provided a range of values more suitable for defining groups 
of source vocabularies using hierarchical clustering.) We 

generate a distance matrix by calculating the Euclidian 
distance between terminologies pairwise. 
We then use an agglomerative method of hierarchical 
clustering to group together similar semantic group profiles. 
The agglomerative hierarchical clustering algorithm starts 
with a distance matrix and identifies the pair of source 
vocabularies that are the most similar. This forms the first 
cluster. The distance matrix is then recalculated, with 
complete linkage defining the distance between clusters as the 
largest distance between any two of its elements. The elements 
of the matrix are compared to find the next closest pair 
between sources or clusters. This is repeated until a single 
agglomerative cluster of all source vocabularies is formed. 

Visualizing semantic group profiles 

We propose three different visualizations for the semantic 
group profiles depending on what we want to emphasize. 
Namely, we visualize single semantic fingerprints (i.e., single 
terminologies) with “donut” pie charts, sets of semantic 
fingerprints (i.e., multiple terminologies) with heatmaps, and 
associations between terminologies and semantic groups with 
network representations. 
Visualizing single semantic group profiles 
We use “donut” pie charts for visualizing single semantic 
group profiles. In this visualization, the source is represented 
as a ring. The source ring contains arcs corresponding to each 
semantic group. The size of the arc is proportional to the size 
of the corresponding semantic groups in the source. In 
addition to displaying the profile of a give terminology, this 
representation also makes it easy to compare different profiles. 
Visualizing sets of semantic group profiles 
We provide a heatmap representation of the data found in the 
distance matrix. The source vocabularies are listed on the x-
axis and the semantic groups are listed on the y-axis. Density 
on the heatmap corresponds to the percentage of all concepts 
within a source vocabulary that is found in a given semantic 
group. Density is color coded, with red for high percentages of 
a semantic group in terminology and yellow for low 
percentages. As a result, scanning a vertical slice (column) of 
the heatmap provides a visual representation of the semantic 
group profile for a source vocabulary. Conversely, by 
scanning a horizontal slice (row) of the heatmap, a user can 
easily identify those source vocabularies with a large 
proportion of concepts for this semantic group. 
Additionally, we generate a dendrogram to visualize the 
hierarchical clustering of the source vocabularies. Short 
branches on the tree represent terminologies with similar 
semantic group profiles, while long branches represent more 
dissimilar source vocabularies. The dendrogram can be cut to 
obtain a given number of clusters. Clustering also helps 
contrast groups of terminologies with similar semantic group 
profiles within groups and different profiles across groups. An 
arbitrary number of clusters can be produced, depending on 
the threshold of similarity among clusters used. 
Visualizing associations among terminologies 
In order to visualize associations among terminologies 
through semantic groups, we apply a bipartite network 
visualization to the semantic group profiles for visual display 
of content across multiple source vocabularies. 

• Nodes represent semantic groups on the one hand and 
source vocabularies on the other 

• An edge from source S to semantic group G is drawn 
if the source vocabulary contains at least some 
percentage of concepts in G. 



The network representation makes it easy to identify which 
source vocabularies share a high concentration of a particular 
semantic group, as these vocabularies all have edges to this 
semantic group. Different networks can be obtained by 
selecting different thresholds for the minimum proportion of 
concepts from semantic groups. 

Implementation.  

All statistical analyses and heatmap visualization were 
performed using the R statistical software. Network display 
and “donut” pie chart leverage the JavaScript library "D3 for 
Data-Driven Documents". 

Results 

Visualizing single semantic group profiles – “donut” pie 
charts 
Figure 1 shows the semantic group profiles of four UMLS 
source vocabularies. As mentioned earlier, the Foundational 
Model of Anatomy (FMA) contains almost exclusively 
anatomical concepts, displayed in light green. Similarly, the 
Online Mendelian Inheritance in Man (OMIM) vocabulary 
essentially contains gene (green) and disease (red) concepts. 
In contrast, SNOMED CT, a general clinical terminology, 
contains concepts from almost all semantic groups, with a 
large proportion of disease concepts. Finally, while the 
National Drug File-Reference Terminology (NDFRT) is a 
drug terminology, it also contains not only a majority of drug 
concepts (dark green), but also large numbers of concepts 
from other semantic groups, including Disorders (red) and 
Physiology (orange), because NDF-RT drugs are described in 
terms of physiologic effect and mechanism of action 
(Physiology), as well as therapeutic intent (Disorders). 
Visualizing sets of semantic group profiles – heatmaps and 
dendrograms 
Figure 2 shows the heatmap and dendrogram resulting from 
the hierarchical clustering of 78 source vocabularies. 
(Although the distance matrix was computed for all source 
vocabularies, the display is limited to these 78 vocabularies 
for readability. In practice, we filtered out non-English 
vocabularies. While translations of vocabularies contain new 
labels for concepts, their semantic content is identical to that 
of their English source. We also ignored vocabularies with 
fewer than 1,000 concepts since their small size limits their 
overall significance.) 
Columns from the heatmap represent the semantic group 
profiles of individual source vocabularies. For example, the 
Foundational Model of Anatomy is represented by a single red 
spot for the semantic group Anatomy, while SNOMED CT 
spans multiple semantic groups in the column. Conversely, the 
rows of the heatmap reflect the density in concepts from a 
given semantic group. The large red bar in the lower right 
corner corresponds to a high density of concepts from the 
Disorders semantic group in disease terminologies. 
The clustering algorithm was (arbitrarily) required to produce 
6 clusters. Each cluster is rooted by the top subdivisions of the 
dendrogram (and highlighted by boxes with solid lines on the 
figure). Clusters range in size from 1 source vocabulary 
(HGNC) for the leftmost cluster, to 26 source vocabularies for 
the rightmost cluster. Some clusters are homogenous. For 
example, cluster 1 contains one gene terminology, cluster 2 
contains 6 procedure terminologies and cluster 4 contains two 
terminologies primarily containing organisms. In contrast, the 
remaining clusters are heterogeneous and subgroups can easily 
be identified within them. For example, the large cluster 3 
groups drug terminologies such as RxNorm, device 

terminologies, such as the Current Procedural Terminology 
(CPT), and general terminologies, such as SNOMED CT. 
Similarly, cluster 5 groups organism terminologies, such as 
the NCBI Taxonomy, anatomical terminologies, such as the 
Foundational Model of Anatomy (FMA), administrative 
terminologies, such as the HL7 value sets (HL7V2.5), and 
terminologies with focus on physiological concepts, such as 
LOINC and the International Classification of Functioning 
(ICF). Finally, cluster 6 clearly groups disease terminologies, 
some of which contain only disease concepts (e.g., ICD 10-
CM), while others also contain concepts from other groups 
(e.g., genes and diseases in OMIM). 
Visualizing associations among terminologies – networks 
The bipartite network we created for visualizing associations 
among terminologies contains two types of nodes. The source 
vocabularies are represented in green, while the semantic 
groups are in yellow. Edges are drawn between a source 
vocabulary and a semantic group if the vocabulary contains at 
least 5% of concepts from this semantic group. (This arbitrary 
threshold can be modified to reflect stronger associations.) In 
Figure 3, source vocabularies that contain at east 5% of 
concepts from the semantic group Disorders are highlighted. 
Similarly, as shown in the inset from Figure 3, it is also 
possible to highlight all semantic groups for a given source 
vocabulary (i.e., all the semantic groups, whose concepts 
constitute at least 5% of the source vocabulary). 

Discussion 

Use cases and applications 

The semantic group profiles provide a method for assessing 
the similarity among source vocabularies in the UMLS. This 
general technique can be applied to terminology exploration, 
terminology selection and terminology comparison. 
Exploring terminologies 
Novice users of the UMLS sometimes have difficulties 
grasping the differences among the many source vocabularies 
in the Metathesaurus. While the UMLS Terminology Services 
browser allows users to find the details about individual 
Metathesaurus concepts and their relations, it does not provide 
an overview of sets of concepts in source vocabularies. Our 
donut pie charts, heatmap and network visualizations provide 
an overview of the content of the source vocabularies. More 
specifically, they provide a coarse description of the semantics 
of these terminologies, making it possible to quickly identify 
the major semantic areas in a given vocabulary. 
Selecting terminologies 
One common use case is to select the best terminology for a 
given application. For example, if an application requires 
disease concepts, our visualizations make it easier for a user to 
identify candidate terminologies, i.e., terminologies containing 
a large proportion of concepts from the semantic group 
Disorders. In practice, a user will look for a large red arc on 
the donut pie charts, or might scan the DISO row on the 
heatmap, looking for red spots. Alternatively, our user could 
also select the DISO node on the network visualization and 
explore all source vocabularies linked to it, having set an 
appropriate threshold for the minimal proportion of concepts 
from this semantic group required for edges to be drawn. 
Comparing terminologies 
The heatmap is also the visualization of choice for analyzing 
sets of source vocabularies, especially after the hierarchical 
clustering has grouped together those terminologies that have 
similar semantic group profiles. The clusters displayed in 
Figure 2 and presented in the Results section are relatively 



easy to interpret, with minimal prior knowledge of the 
terminologies themselves. Similarity clusters can also be 
quantified, since the basis for clustering is the Euclidian 
distance computed among the semantic group profiles for 
individual source vocabularies. 
Content-based vs. usage-based classification 
Our work was motivated in part by the limitations of the 
usage-based classification the UMLS documentation used to 
provide. We compared the two classification approaches for 
the 55 source vocabularies for which it was available. The 
general trend is that there is limited overlap between the two 
classifications. Categories from the usage-based classification 
are generally associated with several semantic groups, and a 
given semantic group is generally associated with multiple 
categories from the usage-based classification, with no 
obvious patterns in these associations. One exception is the 
usage-based category “Adverse drug reaction reporting” that 
contained only one source vocabulary (MedDRA) and 
majoritarily contains concepts from the semantic group 
disorders. In fact, the two classifications provide different 
views on the source vocabularies and are complemantary. For 
example, it would be impossible to identify consumer health 
vocabularies or nursing vocabularies simply from the semantic 
group profiles. However, as mentioned earlier, unlike the 
manual usage-based classification, our semantic group profiles 
can be applied automatically to any new version of the UMLS. 
Finally, another advantage of our method is that, because it is 
a vector-based representation of the source vocabularies, it 
lends itself nicely to visual representation. 

Limitations 

Many concepts have more than one semantic type; however, 
these multiple semantic types are generally categorized into 
the same semantic group. Therefore most concepts are 
categorized by only one semantic group. In fact, only about 
1,000 concepts have multiple semantic groups. As a result, the 
fifteen semantic groups form partition for over 99.9% of all 
UMLS concepts, and are thus virtually disjoint. For the 
purpose of computing the distribution of the concepts from a 
source vocabulary into semantic groups, the concepts that 
have multiple semantic groups should logically not be counted 
more than once. In practice, these concepts are so few in the 
UMLS that double-counting them has no significant effect on 
the frequency distributions. 
The assignment of a semantic type to a UMLS concept is 
sometimes subjective and can be arguable. Many concepts are 
categorized with multiple semantic types. In contrast, all 
UMLS concepts are categorized in 15 disjoint semantic 
groups. Because the semantic groups are broader, the 
assignment of concept to a group is less likely to be arguable. 
However, some groups can be viewed as too general for this 
application. For example, the semantic group “Chemicals” 
contains both drugs and other chemicals. A user could be 
interested in retrieving drug vocabularies, rather all chemical 
vocabularies. As suggested in [13], the grouping of semantic 
types into semantic groups could be modified to fit the 
requirements of a particular application. 

Future work 

In this study we have used our fingerprinting methodology on 
UMLS source vocabularies. Leveraging concept mappings 
among terminologies, our approach could be used to 
automatically classifiy the content of non-UMLS 
terminologies in repositories such as the NCBO Bioportal. 
Our semantic group profiles could also be used to help 
characterize resources annotated to UMLS concepts, e.g., 
biomedical articles or clinical text annotated by MetaMap. 

Conclusion 

The growth of the UMLS makes it difficult for users to select 
appropriate source vocabularies for a given purpose. In this 
article, we present a new method to classify biomedical 
terminologies based on their content. We leverage the high 
level semantic categorization of concepts in semantic groups 
to create a profile for each source vocabulary. Our approach is 
completely automated and can easily be applied to all source 
vocabularies in the UMLS, including upcoming versions of 
the UMLS.  
To assist the user in the exploration of available source 
vocabularies, we propose several visualizations reflecting the 
individual content of source vocabularies (donut pie charts, 
heatmaps), as well as the relations among source vocabularies 
(dendrogram, network). We are currently collaborating with 
the UMLS team to add the graphical representations to the 
UMLS documentation, as a complement to the classification 
they already provide. 

References 

[1] Bodenreider O. The Unified Medical Language System 
(UMLS): integrating biomedical terminology. Nucleic 
Acids Res 2004;32(Database issue):D267-70 

[2] Bodenreider O, McCray AT. Exploring semantic 
groups through visual approaches. J Biomed Inform 
2003;36(6):414-32 

[3] Mougin F, Bodenreider O, Burgun A. Analyzing 
polysemous concepts from a clinical perspective: 
application to auditing concept categorization in the 
UMLS. J Biomed Inform 2009;42(3):440-51. 

[4] Jimeno-Yepes A, McInnes BT, Aronson AR. 
Collocation analysis for UMLS knowledge-based word 
sense disambiguation. BMC Bioinformatics 2011;12 
Suppl 3:S4. 

[5] Jiang G, Solbrig HR, Chute CG. Quality evaluation of 
value sets from cancer study common data elements 
using the UMLS semantic groups. J Am Med Inform 
Assoc 2012;19(e1):e129-36. 

[6] Elting LS, Martin CG, Cantor SB, Rubenstein EB. 
Influence of data display formats on physician 
investigators' decisions to stop clinical trials: 
prospective trial with repeated measures. BMJ 
1999;318(7197):1527-31 

[7] Feldman-Stewart D, Brundage MD, Zotov V. Further 
insight into the perception of quantitative information: 
judgments of gist in treatment decisions. Med Decis 
Making 2007;27(1):34-43 

[8] Hoeke JO, Bonke B, van Strik R, Gelsema ES. 
Evaluation of techniques for the presentation of 
laboratory data: support of pattern recognition. Methods 
Inf Med 2000;39(1):88-92 

[9] Morrow DG, Hier CM, Menard WE, Leirer VO. Icons 
improve older and younger adults' comprehension of 
medication information. J Gerontol B Psychol Sci Soc 
Sci 1998;53(4):P240-54 

[10] Cleveland W, McGill R. Graphical perception: Theory, 
experimentation, and application to the development of 
graphical methods. Journal of the American statistical 
association 1984;79(387):531-554 

[11] Pinker S. A theory of graph comprehension. In: Friedle 
R, editor. Artificial intelligence and the future of 
testing. Hillsdale, NJ: Erlbaum; 1990 

[12] Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N. 
Visualizing multidimensional cancer genomics data. 



Genome Med 2013;5(1):9 
http://www.ncbi.nlm.nih.gov/pubmed/23363777. 

[13] McCray AT, Burgun A, Bodenreider O. Aggregating 
UMLS semantic types for reducing conceptual 
complexity. Stud Health Technol Inform 2001;84(Pt 
1):216-20 

Acknowledgments 
This work was supported by the Intramural Research Program of the 
NIH, National Library of Medicine. BR is supported in part by the 
the Cancer Research and Personalized Medicine - CARPEM project 
(Cancer Research Site - SIRIC). The authors thank Steve Emrick for 
useful discussions and feedback on the semantic fingerprints of 
UMLS source vocabularies. 

Address for correspondence 
Corresponding author: olivier@nlm.nih.gov 

 

 
Figure 1– “Donut” pie charts for 4 UMLS source 

vocabularies. Color code: ANAT (light green), GENE (green), 
DISO (red), CHEM (dark green), PHYS (orange), LIVB (ma-

genta), PROC (light yellow) 

 
Figure 3– Network visualization of UMLS source 

vocabularies (green) linked to the semantic group Disorders 
(yellow) [Inset: Network visualization of SNOMED CT and its 

associations with several semantic groups] 

 

 
Figure 2– Heatmap of the UMLS terminologies and semantic groups. Bright yellow corresponds to the absence of a semantic group 

in a terminology. In contrast, bright red denotes a high percentage of concepts from the corresponding semantic group in the 
terminology. 
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